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THE LEAP CHERENKOV DETECTOR EMPLOYING FLUOROCARBON

LIQUID IN A MAGNETIC FIELD
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1)Department of Physics, University of Arizona, Tucson, AZ 95791, USA

2) Sandia National Laboratories, Div. lgTg, P.O. Boz 5800, Albuquerque, NM 87185, USA

The Cherenkov detector designed and built for the LEAP (Low Energy AntiProton)

experiment utilized a novel design to achieve appreciable sensitive area (0.2 m s) with a

refractive index of 1.25 in a magnetic fringe field region (500-1000 Gauss). The weight

was held to only 64 kg by using 16 unshielded Hamamatsu R2490-01 photomultiplier

tubes, each aligned with its local magnetic field. A filling and reservoir system for the

highly volatile FC-72 liquid Cherenkov radiator also presented many design challenges.

Relativistic particles yielded about 72 photoelectrons, total.

1. Introduction

On August 21, 1987, the LEAP (Low-Energy AntiProton) experiment was launched

from Prince Albert, Canada, for a 20-hour flight at a residual atmospheric thickness of 4.7

g/cm 2 . LEAP, a high-altitude balloon-borne antiproton search, is a collaboration of groups

at NASA/Goddard Space Flight Center, New Mexico State University, and the Univer-

sity of Arizona. The principal components of LEAP are the NMSU magnet spectrometer,

GSFC time-of-flight (TOF) counters, and a UA Cherenkov counter. A schematic of the

experimental stack is shown in fig. 1. The magnet spectrometer, described in detail else-

where [1], measures the charge sign and rigidity of particles by tracing their trajectories

using eight planes of x-y multiwire proportional counters (MWPCs) in a magnetic field

produced by a superconducting magnet coil. For a Z = 1 particle, the magnetic rigidity is

numerically equal to the particle momentum. The TOF system, described in reference [2],

consists of four planes (two above the magnet, two below the magnet) of plastic scintillator

slabs that were viewed by photomultiplier tubes at one end of each slab. The TOF system



measuredthe velocity of the incoming particles and was sufficiently accurate for particle

identification below 500 MeV.

The Cherenkov counter, described here, was designed and built by the Arizona group

to extend the energy range of LEAP to 1.2 GeV, as well as identify spurious background

events due to electrons, muons, or pions. Protons and antiprotons with less than 1.2 GeV

kinetic energy radiate less than 1/2 of the maximum Cherenkov light intensity; in the

same rigidity range lighter particles, such as electrons, muons, and pions, radiate nearly

the maximum intensity. The Cherenkov counter could then effectively separate the heavier

protons from the relatively light background particles. Thus, the counter was indispensable

to the identification of antiprotons above 600 MeV kinetic energy, since the TOF system

was not sufficiently accurate at those energies to separate antiprotons from the lighter

cosmic ray cascade background particles. In addition, the Cherenkov counter served as a

veto against electrons, muons, and pions for the analysis of the lower energy data. Because

of the high magnetic field region in which the detector was positioned and additional weight

and size constraints, the Cherenkov counter utilized a novel design. The total weight for

this counter was 64 kg.

Directly below the Cherenkov counter was a plastic scintillation counter ($2), that

recorded the exit of particles from the bottom of the Cherenkov counter. At the top of

the LEAP stack, a scintillation detector ($1) was used to determine the magnitude of the

particles' charge and, in combination with $2, was an additional rough check on the TOF

and travel direction. Thus, the LEAP experiment was designed to detect antiprotons in

the 120 MeV to 1.2 GeV kinetic energy range.

2. The counter

In essence, the Cherenkov counter consists of a box filled with FC72, a liquid flu-

orocarbon which emits Cherenkov radiation whenever charged particles pass through the
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liquid with a velocity exceedingthe speedof light in this medium. Assuming a constant

index of refraction (n), the Cherenkovlight intensity ratio [3],

_ 1-1/(n#) 2 (1)
I<,m:: 1 - l/(n) l '

where I< is the Cherenkov light intensity and I<,m=, is the maximum light emitted for a

Z = 1 highly relativistic particle, is a function only of velocity _ and n. In fig. 2, Ic/Ic,m=x

is plotted as a function of the particle kinetic energy for several values of n. To separate

the heavier protons and antiprotons form electrons, muons, and pions, we required the

protons in the rigidity range of interest to radiate less than about 50% of Ic,,n_,, while the

pions in the same rigidity range radiate close to Ic,ma,. For intensities < (1/2)I¢/Ic,ma,

the proton/antiproton curve in fig. 2 has a steep slope and is thus in the most sensitive

range for gathering information on velocity. While any index of refraction between 1.10

and 1.33 would distinguish antiprotons from electrons, muons, and pions, the refractive

index must be about 1.25 in order to identify antiprotons in an energy range which extends

the LEAP energy range above that of the accurate energy range of the TOF system.

Liquid fluorocarbon FC72 [4] was found to be an appropriate medium because of its

1.25 index of refraction, its low coefficient of absorption in the visible and ultraviolet, and

the slow variation of n as a function of wavelength. The results of our optical measurements

of n are presented in fig. 3. Among the fluorocarbon fluids, FC72 was the least expensive

and, at 1.68 g/cm 2, the least dense.

2.1. Enclosures for liquid and light

In the final design, the liquid FC72 was held in an acrylic box with inside dimensions

of 438 mm x 438 mm x 121 mm. This box was viewed by 16 Hamamatsu R2490-01

photomultiplier tubes (PMTs) held in place by an aluminum box that surrounded the

acrylic box (see fig. 4). The acrylic box was constructed of UVA (ultraviolet absorbing)

material, with 9.5 mm thick side walls and 4.8 mm thick top and bottom walls. As shown

in fig. 4, the box had two projections, a filling nipple and a venting nipple, allowing hoses

3



to be attached for the filling and emptying of FC72 into and out of the box. The inside

surfacewas coatedwith a waveshiftermixture (p-Terphenyl, Bis-MSB, and PPO) referred

to as "blue waveshifter" by Viehmann and Frost [5]. The waveshifterallowed us to detect

UV photonsin addition to thosein the visible. Sincethe coating wason the inner surfaceof

the box, UVT (ultraviolet transmitting) acrylic wasnot necessary.In fact, we specifically

avoided UVT acrylic, since,in the past, it had beenfound to emit scintillation light [6].

The acrylic box surrounding the FC72 liquid radiators avoids the problems of win-

dows and sealsat each PMT or placing the PMTs inside the liquid, but a small penalty

is paid - the top and bottom acrylic walls of the box contribute to the Cherenkov light.

At the threshold for n = 1.25, the box contributes a background equivalent to 6% of the

maximum light output of the liquid radiator. At 1.2 GeV proton kinetic energy, this be-

comes 10%. Below the threshold for n = 1.25, the background light persists down to a

Cherenkov threshold at proton kinetic energy E = 320 MeV.

Immediately surrounding the transparent acrylic box was an aluminum box, pro-

viding the necessary fight-tightness and mechanical support for the PMTs. The bottom

and sides, excluding the PMT holders (the projections on the four sides), was cut from a

single piece of 1.6 mm thick aluminum and folded into position. The seams and cylindrical

PMT holders were welded together. The top is a separate removable piece, complete with

projections that allow clearance for the acrylic fill and vent nipples, and for their attached

tubing to be fed through to the outside. The top piece was attached to the rest of the

box with black optical tape. Outside the aluminum box the top and bottom walls were

supported by 13 mm thick sheets of aluminum Hexcel, and the fluid inside was maintained

at a slight positive pressure relative to the outside. The inside surface of the aluminum box

was painted with Eastman Kodak BaSO4 paint. This highly reflective paint [7] allowed

us to collect a large fraction of the Cherenkov light generated by each particle. Sixteen

51 mm diameter Hamamatsu PMTs viewed this box, each PMT face bordered by a 6 mm

radial width non-reflective area (the layers of 6 mm thick foam plastic used to stabilize the
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tubes in position). The calculated efficiencyfactor of the white box was 0.33, assuminga

reflectivity of 0.992for the white paint.

2.2. PhotomuItiplier tubes

The Harnamatsu R2490-01 PMTs were selected because of their ability to oper-

ate without magnetic shielding in the 500-1000 Gauss magnetic spectrometer fringe field

present at the counter's position, provided that each PMTs axis is parallel within 5 ° to

the local magnetic field direction. If heavy iron shields had been necessary, they would

have distorted the spectrometer field, requiring intensive mapping of the field as well as

adding significantly to the total weight of the experiment. To accommodate the Hama-

matsu tubes, each projection of the aluminum box had to be attached at a specific angle,

which was calculated utilizing a computer model of the LEAP magnetic field. The numer-

iced solution for the field was obtained by modeling the magnet coil (seen as a thick band

of current) as an array of infinitesimally thin circular loops of current [8].

2.3. Filling system

The filling system designed to fill the counter with FC72 while in place in the LEAP

system is shown in fig. 5. A careful design was necessary to satisfy the following require-

ments: The filling system must, first of all, be able to completely fill the counter, without

bubbles, and drain the counter completely while in place in the LEAP gondola without

being able to visually inspect inside the counter. The system must be able to accommo-

date any pressure changes in the gondola (equalizing the pressure between the FC72 and

the gondola atmosphere) and any volume changes in the FC72 liquid (due to temperature

changes). The filling system must preserve the light-tightness of the Cherenkov counter.

Finally, the system must not spill, leak, or evaporate the volatile FC72 fluid, even when

the gondola tips over on landing to avoid contamination of the other LEAP detectors and

loss of the FC72 (the counter contained about $1000 US worth of FC72).

Two lines of clear polyethylene tubing, 6.4 mm inner diameter, attached to the

inlet and vent nipples of the acrylic box, were fed through the aluminum box, and were
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then attached to sections of copper tubing, each formed into four helical turns. The clear

tubing between the aluminum box and the copper helices was covered with two layers of

black shrink-wrap electronic spaghetti tubing. The shrink-wrap and the copper tubing

spirals prevented light from entering the counter through the inlet and outlet tubing,

completing the light-tightness of the system. Both the fill and vent lines were attached to an

outside translucent polyethylene reservoir [9] directly exposed to atmospheric pressure with

a capacity of two liters. This reservoir allows the FC72 to thermally expand and contract

during the flight without excessively pressurizing and damaging the acrylic box, while

maintaining a liquid pressure about 200 mm above the outside pressure. To discourage

evaporation of the fluid, the reservoir lid was vented via a long 3.2 mm diameter tube that

circled the inner wall of the gondola for two full turns. This circular vent tube provided a

long diffusion length of approximately 10 m, yet would prevent fluid leakage if the gondola

did not land upright after the flight.

The lines and valves shown in fig. 5 allowed us to fill the counter without air bubbles

in the counter itself or in any of the filling system lines. While filling, the counter was tilted

slightly so that the vent outlet was at the counter's highest point, forcing air bubbles in

the counter up the vent line. At the end of a filling cycle, the FC72 fluid level was

visible through the translucent walls of the fluid reservoir, ensuring that the counter was

completely filled. A complete set of written instructions for filling and draining procedures,

developed before final assembly with the acrylic box clamped between wood supports,

helped to prevent costly errors.

2.4. High voltage adjustments

The PMTs were divided into two groups of eight, with each group connected to a

Spellman 3 KV high voltage supply through series voltage-adjusting potentiometers for

each PMT. The high voltage adjustments were balanced during final assembly for equal

PMT outputs using a light source that we constructed. The light source used the conversion

electrons (662 keV) from a point Cs 137 source embedded in a 2.5 mm radius sphere of plastic



scintillator to provide a fixed pulse of light. At this thickness, the conversion electrons

would deposit essentially all of their ionization energy loss in the surrounding scintillator,

but the gamma-ray background due to Compton recoil electrons was minimized. The

resulting pulse height distributions from each Hamamatsu PMT were measuredwith a

LeCroy model 3001 multi-channel analyzer in the charge-integrating mode. Each PMT

wasset at a point that correspondedto a gain of approximately 106.

]2.5. Output electronics

The LEAP stack used both NIM and CAMAC electronics. A logic diagram for the

LEAP experiment as a whole is shown elsewhere [11]. Pulses from the Cherenkov PMTs

were amplified a factor of 10 separately for each PMT using Avantek GPD-110 100 MHz

high frequency amplifiers before entering LeCroy 2249 ADCs. The signal from $2 was

also analyzed by one of these ADCs and, in addition, a signal splitter allowed us to use a

TDC for a rough TOF from the S1-$2 signals. An event would trigger the LEAP stack

whenever there was at least one "hit" in each of the four TOF planes. The readout was

also programmed such that a signal from S1 was necessary to begin the process of event

recording.

3. Counter position calibration

Using flight data, the response of the Cherenkov counter was mapped in two-

dimensional space in relation to coordinates given by the MWPC system. Events possess-

ing a rigidity greater than 2 GV, where the counter response was well above the pedestal

value, were used to produce an image of the counter. The high rigidity ensured a straight

trajectory in the magnetic field in the vicinity of the counters. The z and y position, where

each event intersected the midplane of the counter as determined from the trajectory of the

particle through the MWPC planes, was plotted and an image of the Cherenkov counter

was generated.



3.1. Signal calibration

We then turned to the problem of signal calibration. The pulse heights of events as a

function of R, the distance from the center of the counter to the particle's intersection with

the midplane of the counter, were examined. We used only events of high rigidity (as seen

by the MWPCs) that passed within the counter's boundaries as determined previously. For

this purpose positive rigidity events, where 2 < Rigidity < 10 GV and negative rigidity

events, where -10 < Rigidity < -0.5 GV, were employed.

For each interval of R, the most probable pulse height for the sum of all 16 PMTs

was estimated as fixed percentile of the events when ranked by pulse height. The results

are shown in fig. 6, where least-squares fits to a uniform distribution and a quadratic

correction are shown. Since the variation is small compared to the statistical fluctuations

in an individual event, which must be identified as a p or not, the uniform approximation

for the sensitivity (and pathlength) is adequate.

4. Photoelectron sensitivity

To determine the average number of photoelectrons expected from a fast particle

radiating the maximum Cherenkov light, we looked at the uncorrected pulse heights (no

corrections for pathlength or sensitivity) from the sixteen Cherenkov PMTs with only a

pedestal subtraction. We restricted our data set to a population of negative rigidity events

while balloon-borne, which passed data cuts indicating a single, Z = -1 particle with a

rigidity greater than 0.5 GV, passing through a small central region possessing 1/9 of the

area of the whole Cherenkov counter.

The total number of events (Ntotat = 518) and the number of events that were at

the pedestal (Nz,ros) for each tube (thus, giving a zero photoelectron reading) for this

subset of data were recorded. In Poisson statistics, the probability of such a zero reading

is

P(O) =_-m,, (2)

where rni is the average number of photoelectron for the ith PMT.
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Thus, an estimate r_, is given by

mi = In(Ntotat/Nz_ros) (3)

for the ith PMT. Employing the above equation, we were able to estimate the expected

number of photoelectrons for each of the sixteen PMTs; when these 16 numbers were added

together, the total number of photoelectrons was estimated

•-_i= 16 ^
T/,p.e. _ 2._i= 1 r/2i (4)

which totaled 52.4 photoelectrons for a fl = 1 particle. However, there were a few events

(14) that seemed to have an anomalously low total Cherenkov output. They did not seem

to be a part of the general peak. When we excluded those few events, the average total

number of photoelectrons calculated from the above equation jumped to 72.2.

The expected total number np.,. of photoelectrons for a singly-charged relativistic

particle is

[(np._. = 1 - 137c eLight Coil eQE , (5)

where n = 1.25 is the index of refractions, Aw = 27rc(1/Ami,, - 1/Ama_) _ 2.2 × 1015 s -1

is the bandwidth for the R2490-01 PMT, Ax = 12.1 cm is the radiator thickness, c =

3 × 101° cm/s is the speed of light, _Light Coil "_ 0.33 is the light collection efficiency,

and eC2E _ 0.15 is the photocathode quantum efficiency. For the above numbers, eqs.

(5) predicts np._. _ 115 photoelectrons. The wavelength shifts would increase Aw, but

CLight Coil could be substantially lower than 0.33, if the acrylic box, waveshifter, or FC72

liquid absorbs slightly between 320 and 510 nm. When looking at the negative rigidity

events, the Cherenkov peak (fig. 7) has a tail at the high intensity end. This is not evident

in the analogous population of positive rigidity > 0.5 GV events (fig. 8).

The high Cherenkov tail for the negative rigidity events must be composed of show-

ering electrons. The radiation length in FC72 is approximately 36.1 g/cm2; the exact

molecular formula of the FC fluids is a trade secret. The Cherenkov counter thickness
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is 21.34 g/cm2. Thus, more than half of the entering electrons will shower. The posi-

tive rigidity population, which is mostly protons, has little suchshoweringactivity, which

explains the small tail of its distribution.

With 72.2photoelectrons,the standard deviation is 8.5. However, due to the mul-

tiplicative ratio RPMT at each PMT dynode, one expects the standard deviation at each

PMT output to be increased by a factor of

Rp---'_T -- 1 --_ 1.31 , (6)

where the gains of all 16 dynodes of each PMT are assumed equal, so

RPMT _- (106) 1/16 -- 2.37. (7)

Using eqs. (7) and (6), a standard deviation of 1.31(72.2) 1/2 = 11 photoelectrons would be

expected. Figure 9 shows the distribution of total pulse height observed in a set of high

rigidity positive and negative muons at ground level; its width is a factor of 1.38 larger

than predicted on the basis of eqs. (2)-(7), corresponding to a standard deviation of 15

photoelectrons. Thus, the level of maximum Cherenkov light and 50% of that level are

separated by 2.4 standard deviations.

Figure 10 shows an "isovariant" distribution for positive particles at 5g/cm 2 at-

mospheric depth of Cherenkov response vs. magnetic deflection constructed by plot-

ting k(Ic) 1/2 vs. T_ -1, the inverse rigidity; these variables have approximately constant,

Gaussian-distributed errors independent of their magnitudes, and the constant k has been

adjusted so that the errors in the vertical and horizontal (and any direction) are the same.

The points for particles of a given mass are expected to fall on an ellipse, which, by ac-

cident, is a circle for the protons. The points extending to the right of the circle are due

to the Cherenkov light emitted by the acrylic box. The ellipse of points with a doubled

vertical major axis and a halved horizontal minor axis is due to alpha particles.

Figure 11 is similar to Fig. 10, but for negative particles with (Ic/Ic,,,a_) 1/2 on the

vertical axis and 1.15/T_ on the horizontal axis. Sectors 1 and 2, as well as (Ic/Ic,ma_) 1/2 >
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0.72have beencut from the data. The circular areasshow the +la region for antiprotons.

Three antiproton candidate events can be seen in the +la region below (Ic/Ic,,,,ax) I/2 <

0.6. The point just inside the inner circle is consistent with the number of antiprotons which

would be expected to lie outside +la. (The horizontal line of points with (Ic/Ic,,,,a_) 1/_ ,_

0.72 is the tail of a distribution centered at (I¢/I_,,,,a_) 1/2 = 1 due to negative electrons,

muons, and pions.)

5. Conclusion

It was disappointing that, although the Hamamatsu R2490-01 PMT did give high

gain in a magnetic field, its pulse-height resolution was poor. Using our 662 keV 137Cs

light source, direct comparisons with the RCA8575 PMT indicated that the Hamamatsu

R2490-01 had a line width that was a factor of 2 wider. An improved PMT for use in

magnetic fields is needed.

The FC72 liquid containment and filling system performed perfectly, with little or

no loss of liquid due to the flight and recovery. Although lab tests during the design of

the counter indicated that the waveshifter fluors were insoluble in FC72, it was found after

the flight that some had dissolved into the liquid. This indicates that coating the inside

walls of the acrylic box with waveshifts might be unnecessary. The background Cherenkov

radiation from the top and bottom acrylic wall might be eliminated or reduced by either

(a) developing a high-efficiency white coating which remains unaffected by contact with

FC72 or (b) protecting the white coating with acrylic or Mylar sheets thinner than the 4.8

mm acrylic employed by us, yet thick enough to maintain a sealed enclosure for the FC72.

We gratefully acknowledge the assistance during the design, testing, and assembly

of the Cherenkov counter at the University of Arizona by Professor D. R. Huffman for the

use of optical equipment, by Peter Halverson for the design of the pulse amplifier, and by

M. Damento and S. Syracuse for assembly and testing.
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